IDENTIFICATION OF A SOMATOMEDIN-BINDING PROTEIN PRODUCED BY A RAT HEPATOMA CELL LINE

Dan H. MORRIS, Don S. SCHALCH and Barbara MONTY-MILES

Division of Endocrinology, University of Colorado Health Sciences Center, Denver, CO 80262, USA

Received 25 March 1981

1. Introduction

Somatomedins, a class of 5000–10 000 molecular mass peptide hormones which function as growth factors in mediating the effects of pituitary growth hormone [1–3], circulate in human and rat serum complexed to specific high $M_{\rm r}$ binding proteins [4–7].

There appear to be at least two species of SmBPs*, a larger ($M_{\rm r}\approx 150\,000$) which is growth hormone dependent and a smaller ($M_{\rm r}\approx 60\,000$) which is not. Acid treatment converts the higher $M_{\rm r}$ species to the lower one and dissociates Sm from both [5–7].

Both Sm and SmBp are synthesized by the liver in vivo [8] and by primary hepatocyte cultures [9] and a line of transformed Buffalo rat liver cell, BRL-3A in vitro. The latter cells produce the Sm, multiplication-stimulating activity [10], and a single SmBP comparable to the smaller M_r species found in serum [6,11]. A clone of these cells, BRL-3A-2, produces the SmBP but, in contrast, no MSA [6].

The present study is the first to report the isolation and partial characterization of a SmBP ($M_{\rm r}\approx$ 45 000) synthesized by a line of rat hepatoma cells, H-35 Rueber, which, like the BRL-3A-2 cells, produce no detectable Sm [15].

2. Materials and methods

2.1. Cell culture

Rat Rueber H-35 hepatoma cells were grown as

* Abbreviations: Sm, somatomedin; SmBP, somatomedinbinding protein; 125 I-IGF-I, 125 I-labeled insulin-like growth factor I; SFM, serum-free medium; MSA, multiplicationstimulating activity; $M_{\rm T}$, relative molecular mass monolayers in Richter's Imemzo medium containing insulin (4 μ g/ml) (Associated Biomedic Systems, Inc., Buffalo) supplemented with NaHCO₃ (2.2 g/l), plus 10% tryptose phosphate broth (Difco) and 5% fetal calf serum (Gibco). At the time of cell confluence (5–6 days), the plating medium was replaced with 25 ml of serum-free medium which, after a period of 18 h, was discarded. Fresh SFM was added and harvested successively at 48-h intervals, and aliquots of this 'conditioned' medium frozen and lyophilized.

2.2. Somatomedins

Highly purified (approx. $200 \,\mu\text{U}/\mu\text{g}$) Sm, insulinlike growth factor I (gift of Dr René Humble), was iodinated (spec. act. $\approx 50 \,\mu\text{Ci}/\mu\text{g}$) by the chloramine T method [12] as in [13]. Partially purified (approx. $1 \,\mu\text{U}/\mu\text{g}$) MSA was obtained by gel chromatography (Sephadex G-50, 1 M acetic acid) of the conditioned medium from BRL-3A cells. Sm activity of $1 \,\mu\text{U}$ is defined in terms of its insulin-like action as being equivalent to $1 \,\mu\text{U}$ of porcine insulin standard in promoting glucose oxidation in isolated rat adipocytes.

2.3. Chromatography

A 1 g aliquot of the lyophilized powder (equivalent to approx. 80 ml) was reconstituted in 4.0 ml of 0.15 M ammonium acetate, pH 7.0, and centrifuged to remove particulate material. A 3.6 ml aliquot of the supernatant (approx. 8 mg protein) was subsequently incubated with 75 000 cpm 125 I-IFG-I (approx. 2.5 ng) for 18 h at 4°C. This sample was applied to a 2.5 \times 134 cm Sephacryl S-200 (Pharmacia) column equilibrated in and eluted with 0.15 M ammonium acetate, pH 7.0, at 4°C.

2.4. Competitive protein binding assay Estimation of SmBP activity was determined as in

[13]. Briefly, the binding of 125 I-IGF-I by a sample of SmBP isolated from conditioned medium is quantitated by comparing it with that of known standards of partially purified human SmBP, 1 μ g of which binds 30% of approx. 0.2 ng of 125 I-IGF-I.

2.5. Analytical gel electrophoresis

Electrophoresis was carried out for 2 h at 3 mA/tube in a 10% polyacrylamide gel system, pH 8.5, as in [14]. Subsequently, gels were either stained for protein with Coomassie blue or sliced in 1 mm sections using an electrophoresis gel slicer (Bio-Rad, Richmond, CA). Individual slices were minced, transferred to disposable glass culture tubes (12 × 75 mm) and suspended in 0.4 ml of 0.1 M sodium acetate buffer, pH 4.0. The tubes were then capped and gently shaken at room temperature overnight. Binding protein activity of the supernatants was determined by competitive protein binding assay.

3. Results

The results of Sephacryl S-200 filtration at neutral pH of a sample of conditioned medium incubated with ¹²⁵I-IGF-I are shown in fig.1 A. The elution profile of radioactivity is confined to a single peak, fractions 90–115, with a K_{av} value of 0.33–0.34. In addition to containing approx. 95% of the radioactively labeled peptide added, this peak constituted about 0.04% of the total protein applied and eluted well before 'free' ¹²⁵ I-IGF-I ($K_{av} = 0.64-0.66$) as determined in a separate run. Binding protein activity of individual fractions from a similar chromatographic separation (but without added 125 I-IGF-I) was determined by competitive protein binding assay (fig.1B). This band of BP activity includes, but is broader than, the ¹²⁵I-IGF-I complexed peak seen in fig.1A. The specificity of the BP activity in the $K_{av} = 0.33 - 0.34$ peak is demonstrated by the displacement of 125 I-IGF-I by increasing amounts of added unlabeled MSA (table 1).

An estimation of the apparent $M_{\rm r}$ of the $K_{\rm av}=0.33-0.34$ peak is presented in fig.2. From a plot of the $K_{\rm av}$ of various protein standards νs their known $M_{\rm r}$, we calculate that the peak of SmBP activity has a $M_{\rm r}$ of 45 000 ± 4000 based on multiple determinations

Polyacrylamide gel electrophoresis was utilized in an attempt to further analyze the S-200 peak of SmBP

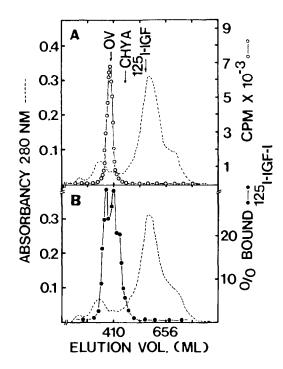


Fig.1. Chromatography of rat H-35 hepatoma conditioned medium on Sephacryl S-200 in 0.15 M ammonium acetate, pH 7.0. Samples were prepared and chromatographed as in section 2. Fraction size: 4.1 ml; flow rate: 35 ml/h. (A) Binding profile after prechromatography incubation with ¹²⁵I-IGF-I. Fractions were monitored individually for radioactivity. (B) Binding profile in the absence of added ¹²⁵I-IGF-I as determined by competitive protein binding assay. Column markers were ovalbumin (OV), α-chymotrypsinogen A (CHY A) and ¹²⁵I-labeled IGF-I (¹²⁵I-IGF-I).

activity (fractions 90–115). A single sharp peak of BP activity was detected in a region corresponding to a discrete protein band in a parallel stained gel (fig.3). The band of BP activity has an $R_{\rm F}$ value near to but slightly greater than rat serum albumin.

Table 1
Displacement of ¹²⁵I-IGF-I from H-35 hepatoma SmBP by added unlabeled MSA

MSA added ^a (μg)	¹²⁵ I-IGF-I bound ^b (% of maximum)
0	100
20	40
50	23

 $a 1 \mu U/\mu g$

b Determined by competitive protein binding assay

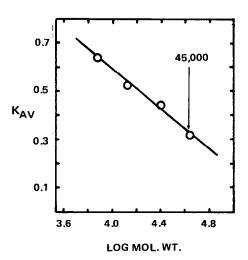


Fig. 2. Estimation of the $M_{\rm T}$ -value of rat H-35 hepatoma binding protein by chromatography on Sephacryl S-200. Sample preparation and chromatography conditions are the same as given in fig.1A. Logarithm of the $M_{\rm T}$ -value of multiple protein standards νs their $K_{\rm av}$ ($K_{\rm av} = (V_{\rm e} - V_{\odot})/(V_{\rm t} - V_{\odot})$; $V_{\rm e}$, elution volume; V_{\odot} , void volume; $V_{\rm t}$, total bed volume) is plotted and yielded a straight line which is used to estimate the $M_{\rm T}$ -value of the BP. In addition to bovine thyroglobulin (750 000) and tyrosine to determine the V_{\odot} and the $V_{\rm t}$, respectively, the following peptide or protein standards from left to right were used: ¹²⁵I-IGF-I (7500), α -lactalbumin (14 400), α -chymotrypsinogen A (25 000) and ovalbumin (45 000). Arrow, elution position of the hepatome SmBP.

4. Discussion

A SmBP has been partially purified and characterized from SFM conditioned by cultured rat H-35 hepatoma cells. The H-35 hepatoma cell line reported here resembles the BRL-3A-2 subclone in that neither produce Sm, but both produce a SmBP eluting as a single peak of 125 I-Sm-complexed activity on gel filtration analysis [6,15]. However, these SmPBs appear to differ in their respective apparent M_r values, the H-35 hepatoma SmBP complex having an apparent M_r of approx. 45 000 on Sephacryl S-200 vs an apparent M_r of approx. 60 000 for both the BRL-3A-2 and BRL-3A SmBP complexes. The latter, consists of two distinct proteins with M_r values of 30 000 and 31 500 in sodium dodecyl sulfate-polyacrylamide gels [11]. Under non-denaturing conditions, both the BRL-3A-2 and BRL-3A SmBPs resemble in size the smaller SmBP ($M_r \approx 60~000$) reported in growth hormone-deficient serum. In vivo growth hormone treatment shifts the size of the SmBP present in the

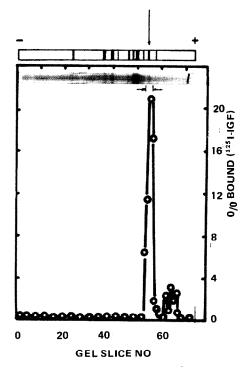


Fig. 3. Distribution of H-35 hepatoma SmBP activity in a polyacrylamide disc gel electrophoresed at pH 8.5. Pooled and lyophilized Sephacryl S-200 fractions 90–115 (fig.1B) were reconstituted in 150 μ l of pH 8.5 running buffer. Aliquots of 50 μ l (100 μ g protein) were electrophoresed for 2 h at 3 mA/tube. One of the gels was stained for protein (upper section); the other was sliced into 1 mm sections, extracted and then assayed for SmBP activity (lower section) as described in text. A drawing of the stained gel is at the top of the figure. Arrow, protein band associated with SmBP activity.

latter to the larger form $(M_r \approx 150\ 000)$ found in normal scrum [6,7]. While growth hormone stimulates Sm production in cultured primary hepatocytes [9], we have not yet tested its influence on either Sm or SmBP production by H-35 hepatoma cells.

Treatment of human and rat serum with acid shifts the SmBP from the larger to smaller $M_{\rm r}$ species, suggesting the larger form is acid labile [5–7]. Prechromatographic incubation of H-35 conditioned SFM with ¹²⁵I-IGF-I followed by Sephacryl S-200 chromatography under acid conditions (pH 4.0) similarly shifts the radioactive complex seen under pH 7.0 conditions to a smaller size ($M_{\rm r}\approx 19~000$) (data not shown). This suggests the $M_{\rm r}\approx 45~000$ species both is acid labile and therefore distinct from the low $M_{\rm r}$

SmBP in serum, and subdividable into smaller components which retain binding activity.

Data from this and previous studies provide evidence that SmPBs, like the Sms themselves, constitute a family of forms which at this time are not fully understood with respect to their structure and function. We believe that the H-35 hepatoma cell line offers a unique model for the study of a previously undescribed, acid-labile, low $M_{\rm r}$ SmBP. The synthesis of this protein in the absence of Sm provides a significant advantage for its isolation without prior cleavage of its ligand.

Acknowledgements

We thank Denise Demers for expert help in preparing this manuscript. The present work was supported in part by the National Institutes of Health (AM 18617).

References

[1] Salmon, W. D. and Daughaday, W. H. (1957) J. Lab. Clin. Med. 49, 825-836.

- [2] Daughaday, W. H. (1971) Adv. Int. Med. 17, 237-263.
- [3] Van Wyk, J. J., Underwood, L. E., Lister, R. C. and Marshall, R. N. (1973) Am. J. Dis. Child. 126, 705-711.
- [4] Zapf, J., Waldvogel, M. and Froesch, E. R. (1975) Arch. Biochem. Biophys. 168, 638-645.
- [5] Hintz, R. L. and Liu, F. (1980) in: Growth Hormone and Other Biologically Active Peptides (Pecile, A. and Müller, E. E. eds) pp. 133-143, Elsevier/Excerpta Medica, Amsterdam, New York.
- [6] Moses, A. C., Nissley, S. P., Passamani, J. and White, R. M. (1979) Endocrinology 104, 536-546.
- [7] Furlanetto, R. W. (1980) J. Clin. Endocrinol. Metab. 51, 12-19.
- [8] Schalch, D. S., Heinrich, Y. E., Draznin, B., Johnson, C. J. and Miller, L. L. (1979) Endocrinology 104, 1143-1151.
- [9] Spencer, E. M. (1979) FEBS Lett. 99, 157-161.
- [10] Dulak, N. C. and Temin, H. M. (1973) J. Cell. Physiol. 81, 153-160.
- [11] Knauer, D. J. and Smith, G. L. (1980) Proc. Natl. Acad. Sci. USA 77, 7252-7256.
- [12] Greenwood, F. C., Hunter, W. M. and Glover, J. S. (1963) Biochem. J. 89, 114-123.
- [13] Schalch, D. S., Heinrich, Y. E., Koch, J. S., Johnson, C. J. and Schlueter, R. S. (1978) J. Clin. Endocrinol. Metab. 46, 664-671.
- [14] Davis, B. J. (1964) Ann. N.Y. Acad. Sci. 121, 404-427.
- [15] Morris, D. H., Monty-Miles, B. and Schalch, D. S. (1981) Fed. Proc. FASEB 40 abst.